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ABSTRACT

)'This paper is concerned with one-step difference methods for parabolic

history value problems in one space variable. These problems, which have the

feature that the evolution of the solution is influenced by 'all its past'

occur in the theory of viscoelastic liquids (materials with 'memory'). The

history dependence is represented by a Volterra-integral in the equation of

motion. Using recently obtained existence results (see-Renardy (1981b)) and

smoothness assumptions on the solutionwe derive a local stability and

convergence result for a Crank-Nicolson-type difference scheme by interpreting

the linearized scheme as perturbation of a strictly parabolic scheme without

memory term. Second order convergence is shown on sufficiently small time

intervals. The presented approach carries over to other one-step difference

methods like implicit and explicit Euler schemes.
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SIGNIFICANCE AND EXPLANATION

In this paper we deal with the numerical solution of parabolic history

value problems. These problems have the feature that the governing equation

depends on the history of the solution such that it is posed as functional

differential equation (that means that the equation can involve Volterra type

integrals and not only derivatives of the function in question). Problems of

this kind occur in the theory of viscoelastic fluids and there the functional

term of the equation represents the 'memory' of the material. We devise a

finite difference method for the numerical solution of such problems and

investigate the convergence properties. It turns out that this method (which

is of Crank-Nicolson type) is second order accurate as the grid parameters

tend to zero.
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DIFFERENCE METHODS FOR PARABOLIC HISTORY VALUE PROBLEMS

Peter Markowich

1. Introduction

We are concerned with finite difference methods for scalar functional differential

equations with prescribed history data:

111ut ' -x g(Uxt'u 
), x e [-1,1], t ;1 0

(1.2) u(x,t) - u(x,t), x e E-1,1], t ' 0

xt x(1.4) g(Uxt(11t), ut[1,°)) = f+(t), t ) 0

Here we denoted the history of a function y e C([--,o]) (which is the space of all

continuous functions on (-1,0] with a finite limit at t = -m) by yt(s) = y(t+s),

a 0 and the (possibly) nonlinear functional g : R x Q + R where S1 is an open set in

C(- ,0]). We also assume that the Frechet derivative (with respect to the first argument)

D1 g 9 C > 0 in R x 2. This assumption makes it possible to interpret (1.1)-(1.4) as a

parabolic initial-value problem in a certain Banach space (see Renardy (1981b)). Histories

for the boundary data u X(-1,t) and ux(1,t) are U x(-1,t) and U x(1,t) reap.

Assuming that (1.3), (1.4) with the corresponding prescribed histories can be solved

for ux(-1,t) and ux(1,t) resp. we are left with a (parabolic) history value problem

with Neumann boundary conditions at x = ±1.

Problems of this kind occur in the theory of viscoelastic liquids when the

constitutive law is expressed as a function of the strain history (see Lodge (1974), Lodge,

McLeod and Nohel (1978) and Renardy (1981b)). The functional g is assumed to be of

Volterra type:

(1.5) g(u tu Y(u ,u + f a(t-s)b(u (t),u (s))ds

where Y, b : R 2 + R and a(O) is an exponentially decaying (as 0 + ) memory kernel.

The dependence of u on the space variable x is not stressed explicity.
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In this paper we set up a Crank-Nicolson-type discretisation for (1.1) on an

interval 10,T) with given history (1.2). The boundary problems (1.3), (1.4) are

discretized by the mid-point rule thus giving discrete Neumann boundary data for the Crank-

Nicolson scheme. hasuming that T is sufficiently small and that the solution u of

1.1)-(1.4) is sufficiently smooth we show stability of the linearized difference scheme

and consistency of the nonlinear scheme at the exact solution u in a discrete Sobolev

space norm. Prom this and from the uniform (in the mesh-sizes) Lipschitz continuity of the

linearized scheme we conclude convergence (of order two) from Keller's (1975) theory.

The approach is to interpret the linearized difference scheme as perturbation of a

strictly parabolic scheme (without history term) and stability of the scheme for the

history value problem will be concluded from the stability of the parabolic difference

scheme. Therefore this approach is applicable to other one-step difference schemes like

the implicit and explicit Puler schemes. The implicit Euler scheme may be chosen if

approximations are needed on a large interval 10,T] (assuming the exact solution exists

there) because it is strongly A-a-stable (see Narkowich and Renardy (1981a,b)).

The paper is organized as follows. In Section two we define the function spaces which

we will need and introduce some notations. Section three deals with the discretization of

the boundary problem and Section four is concerned with the Crank-Nicolson scheme for

(1.1).I

2. Definitions and Notations

We denote

(2.1) C ([-,t 1 ) - C ((-,lt I)flf:l(-t] + RIlim f(t) is finite and

lie f )W - 0 for J 0 Mg.,} N

for some ti 6 R. For y e C ((-,t 1) we define the history yt 6 C ([-,O) by

yt (s) - y(t+e), a [-1,O).
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Renardy (1981a) investigated a model for the stretching of a filament of polymeric

liquid in the form of an initial value problem ((1.1), (1.3), (1.4) are assumed to hold on

-,T], T 6 R U [-I and u(x,t -') is prescribed). He used a functional q of the

form (1.5). A global (T = ) existence and uniqueness theorem for sufficiently small

data fi, f (in the sense of a certain Sobolev space) and a local (for T < 0, ITI

large) existence and uniqueness theorem for arbitrarily large boundary data was

established. The boundary problem (1.3) (in initial value form) was investigated

analytically and numerically in Markowich and Renardy (1981a) using an implicit Euler-type

discretization.

The full spatial-temporal problem (in initial value form) was investigated numerically

in Markowich and Renardy (1981b). Again, an implicit Euler-type discretization was usc, in

order to get approximate solutions with the same asymptotic behaviour as the exact solution

(as t + -) and in order to cope with the singular perturbation character of the problem

(the Newtonian contribution of the viscosity acts as singular perturbation parameter).

Lodge, McLeod and Nohel (1978) investigated the history value problem for the boundary

problem (1.3) assuming the relation (1.5) with Y specified. Under certain assumptions

on a and b they proved a global existence theorem and investigated the asymptotic

behaviour of the solution as t +

Nevanlinna (1978) employed an implicit Euler-type discretization for the boundary

history value problem and proved uniform convergence on [0,ml of the order O(h X),

0 < A 4 1.

Renardy (1981b) proved a local (for t 0 10,T1, T sufficiently small) existence and

uniqueness theorem for the history value problem (1.1)-(1.4) under mild assumptions on the

functional g (not using the special form (1.5)). He transformed (1.1) to a system of

equations which can be interpreted as parabolic in the Banach space C((-',O), H1((I,1)).

This system can be treated following Sobolevskii (1966).

-3-



In the sequel g always denotes a functional from R It Q into a where $1 is an

open set in some space of functions which are defined on [I-,O]. Frechet derivatives of

g are denoted by indices (g, denotes the derivative of g with respect to the first

argument, 92 with respect to the second argument, g12  for example denotes the second

Frechet derivative of g obtained by differentiating first with respect to the first

argument and then with respect to the second argument).

2i
L
2
(-1. ) denotes the space of square integrable functions on [-I,1], H(-11)

denotes the space of L
2
[[-1,13) functions whose (generallzed) derivatives of order up to

X are square integrable and Cm(It 1 t2I. H
t
([-,1]) denotes the space of C-functions

2

u : [t 1 .t 2] * H(-1,1]). All these spaces are equipped with their natural norms.

For the difference scheme we define a grid Gr(h,k) on the infinite strip

f-1,1] x [-iT] by setting h k - , N e such that

(2.2) Gr(h,k) - xtn) j jh, j - (-M-1)(1)(+1) t nk, n < N)

holds. The exterior gridpoints (XM 1 ,Kitn), (xM+t n ) will be needed to define a second

order approximation to the Neumann boundary conditions. We denote grid functions by

(N) = ((Un) .M.1, U e R. We also need grid functions on Gr(h,k) - (exterior grid
U .j n - .-M i

points). They are defined analogously.

By u(N) we denote the grid function on Gr(h,k) n ((x ,t )Ij - i. n < N}:
ii

(N) nt4
(2.3) U( - (Un 

For the discretization of the boundary problems we need the {t = nkln < N) grid on then

real line and

nd

(2.4) y(N) n yn

are functions on this grid. Also we set t - (n + -I)k. We define the following time-
n+1/2 2

difference quotients:
n+I n

(2.S)(a) 6 yn '
k

n n-I
(2.5)(b) 6-y

n 
=Y "Y

k

-4-
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n+1 n-1
(2.5)(c) 6y 2k

Obviously 6+yn  6-yn+1, 6¥
n  1(6 y + 6 -yn) holds. We need the spatial differences:

zi+1-zi
(2.6)(a) Zi h

+ h

z -zi_

(2.6)(b) 
A-zi - h

-i h

(2.6)(c) 
Az. j*4*i

S 2h

These difference quotients will also be applied (component wise) to grid functions, for

example AU ) = (AUn)N '

3. The Boundary Problem

In order to solve the boundary problems (1.3), (1.4) for Ux(1,t) and ux(-1,t)

resp. we discretize

(3.1) g(y,(t),y t) f(t) , t e [0,T] , T e a

(3.2) y(t) - y(t) , t e -- ,0]

by the midpoint rule

(3,3) g(6+yn, (ikY(N))tn +l/2 ) - f(tn+1/2) = 0, 0 4 n < N

(3.4) yn - -(tn 0 , n 4 0

Here yn denotes the approximation to y(tn ) y(N) ( n)N _. and ik is the linear

interpolation operator defined by

(3.5)(a) ik M {u . , n( u S R, lir u = u* e R) - C([-,T])

(3.5)(b) (iku MN)(t) = ui + 6+ u i(t-ti) for ti ( t 4 t i < N

We denote the right hand side of (3.3), (3.4) by
F((N))

(3.6) Fky ) 0

where

II
II



Here AN is equipped with the norm

(3.8)maxlun + max-un + max 16+6 -un
AN n(N neN Ifn<N

BN equals AN (as a set) but as norm we take

(3.9) I*(N) I maxiwn + maxI6-wn
AN n4N n4N

AN is open in AN since g(v,.), v e a is defined on an open set Alc C([--,0]).

The convergence analysis of (3.6) proceeds along the lines of Keller's (1975)

stability-consistency concept. For consistency we need smoothness assumptions on (3.1),

(3.2). We assume that there is locally unique solutions y of (3.1), (3.2) and that

(3.10)(a) g e c2 ( x 0, R), 0 C C( (-,O] ), gl I C > 0 on I x

(3.10)(b) f e C 3([O,T])

4 - 4(3.10)(c) y e C ([0,T]), ye c ([-,0111

(3.10)(d) y e c 2([-,T]), yt e a for t e (0,T]

holds. A local existence (and uniqueness) theorem is given in Renardy (1981b). (3.10d)

holds if the compatibility requirements

(3.11)(a) g(y'(o), Y) - f(o)

(3.11)(b) 91(y'(0), y)y"(O) + g2 (y'(0), y)y' - f'(O)

are fulfilled.

We check consistency of the scheme (3.3), (3.3). We denote

(3.12) #n() nl

(3.10)(c),(d) imply that (i (N))n+1/2 e a for k sufficiently small and so e(N) N

A(N) n _ -F (AMN n.holds. Obviously (Fk(y()) - -(F( )) - 0 for n ( 0. Since

(3.13) 1iA(N) - yl[T] 
I O(k2

yE
- 2 2(because y e C (C-,0)), y e C (C0,T]) and t - 0 is a grid point) we obtain using

(3.10)(a),(b) and the mean value theorem

(3.14) AH(N)))'I - o(k2)

The smoothness assumptions (3.10)(c),(d) imply that

-6-



t (N) tn+1/2 A (N))t n- 1/2  t

(3.15) I
(
k)

ky  W) - 1 0 (k2

holds. Using (3.10), (3.15) and the differentiated equation (3.1)

(3.16) g1(yt(t),yt)y"(t) + g2(Y'(t),yt)(y')t - fl(t) = 0

((3.10)(d) implies that (y')t e C1 I([-,01)) we get, after a simple calculation

(3.17) I6+(Fk( (N ))l - O(k2 ) , n < N

Since all estimates hold uniformly for n 4 N we obtain from (3.14), (3.17)

(3.18) IFk(Y )BN O(k2 )

Therefore the scheme (3.3), (3.4) is consistent of order 2 at y if (3.10) holds.

To check stability we calculate the Frechet-derivative of Fk at ( and get for

u(N) e AN

(3°19(a) ( y )u 9 (l ( Y(tn),iA() n+1/2 6+ u +

+ AMN) n+1/2 (N) t+/
+ g2(6+Y(tn)(i k )iku n+/2 0 4 n < N

(3.19)(b) (F( (N) )u(N))n n (0
CFy ) =u ,ni 0

In order to get an estimate on the norm of (Fk(Y (N : BN + A we investigate the

equation

pg (A(N)) (N) (N) (N) = i N
(3.20) ( ( = )u , ( )=_. e sN

For n 4 0 we have un  6-un  6 -n and for 0 < n < N

(3.21) 6+ u A nk)(ku(N) )
t
n+1/2 n+1

gn+

where An(k) is the linear functional

+^t) (" ̂ (N))t n+1/2
g2(6 y., )Y

(3.22) n(k) -
g y6+(t ),(ik (N))tn+1/2 )

91 ,t n ky  )

and

-7-



n+1
(3.23) = (N)tn+/2

g (6 Y(t ).i y )1 n k
holds. The assumption ga c > 0 on R gi implies that gn(k) is uniformly bounded

(in kn) and that

11 n+1n+1
(3.24) l (n1 4 constknl uniformly in k, n < N

holds. From (3.21) we get:

(3.25) lun+1 1 4 lunl + ck max Iuil + ck ,,n+

1 (j <n+l

and setting vn . max IunI, Zn = max JP we obtain
14j n j (n

(3.26) vn+1 f Vn + ckvn+1 + ckz n+1

From

Vn+1 I vn + clkZn+1
1-ck I

we immediately get IVn, < c e maX ,Jzl and therefore1 14jf-n

(3.27) max lun, 4 const. max jnI
n4N n4N

holds. We obtain from (3.21)

(3.28) max I6+unI < const. max In •
n(N-1 n(N

In order to prove stability in the norms of AN. BN we apply 6- to (3.21) and obtain

(iku(N) )
n +

1
/2  

(w - (N) )n-1/2 (k)-g (k) n
- +k n n- i uN -/

(3.29) 6u n  g (k)( k +  k )a ku

+ 6-,n > 0

A A%

gn (k)-9n-1 (k)
(3.10) implies that k is a uniformly bounded functional (in kn) and

therefore the second term on the right hand side of (3.29) is bounded by const. max IPnl.
n4N

We get by a simple calculation (similar to (3.15))

(iu ) tn+1/2 k N ) )tn-1/2 + n
(3.30) k 0,o, max Inl + max 166 6u I

n<N n<N

-8-



Repeating the argument following (3.21) we get

(3.31) max 16-6+unl 4 const.(maxi6-,n, + max ,n,)

14n<N n4N n4N

and stability follows:

(3.32) i(FkY B A const.

where const. is independent of k. We also have to show uniform Lipschitz continuity of
V in a neighborhood S (N) ) S1 For a (N), b" e S , (N))

k() N y with P sufficiently

small we get from (3.19) and the mean value theorem:

(3.33) (F (a(N)
)  

- F*(b (N) ))u (N)I B const, a (N) - b(N)I lu(N) I
cB N AN AN

for all u(N) e AN where const. is independent of k. (3.10)(a) was used for (3.33).

Therefore uniform Lipschitz continuity of F holds on S (y(N)).

Now, having proven consistency, stability and Lipschitz continuity we apply Keller's

(1975) theory which gives:

Theorem 3.1. Let the assumptions (3.10) on the history value problem (3.1), (3.2)

hold. Then for all k sufficiently small there is a locally unique

solution y(N) e N 4 AN  of the midpoint rule (3.3), (3.4) and

(3.34) max yn-y(tn)I + maxI yn-
I - y'(tn 1 )I +

n4N n<N

+ max:l6
+ 6

-yn-
l 

- y"(t )I H = O(k 
2
) as k + 0

n4N

Moreover the (abstract) Newton procedure

(N) -(N)
(3.35)(a) v (0) - (0)

( 0 ) v ( ) V N )0
(3.35)(b) (N) F(N , (N)) -F (N)vi+) vi )  (kViJ F(~

converges quadratically (to y(N)) from a sphere of starting values

which does not shrink as k + 0.

The abstract Newton method (3.35) immediately translates into the Newton method for

determining y...,yN from (3.3) assuming that (yJ)o_. is given.

-9-



For the convergence analysis of the boundary problem we do not require T small

(except that a smooth solution of (3.11 (3.2) has to exist on (--,T)). Therefore Theorem

(3.1) holds for any finite T to which the solution y can be smoothly continued.

However, the stability constant (3.32) depends on T and soloes the estimate (3.34),

4. The Parabolic Problem

We now discretize the full spatial-temporal problem:

(4.1) utt - g(uxtu )x . 0, xQ (-1,1 , tO 10,T]
txx

(4.2) u(x,t) - u(x,t), x e -1,1], t e t--,o)

(4.3) u x(.)= y +u(t), t a --1,T]

(4.4) .Ux (-It) - y(t), t 0 [-0,T)

where y,, y_ solve the boundary problems

(4.5) g(y;(t), yt) = ft(t), t Q [0,T]

(4.6) yi (t) ;x (t1,t), t a [--,0]

which fulfill the assumptions of Section 3. For convenience we carry out the

differentiation in (4.1) (assuming sufficient smoothness)

(4.7) ut - (g1(u tut)Uxx + g(u ,ut)ut ) 0, x a [-1,11, t Q [0,T]

We discretize (4.7), (4.2), (4.3), (4.4) by the Crank-Nicolson method

(4.8) + - (g (6"' (ihU(N))tn)SA+a-Ur +

a6up" 1. u(N) ) n( k A U(N) tn 0
i( k i ) ) i

for i - -M(1)Mg 0 < n < N

(4.9) U - ;(x, tn) . 0, i -#(1)M, n 0

(4.10) alln yn.- o, n < N
N_ -+ ,

(4.11) An n .-0yn4
-M -

Ui denotes the approximation to u(xi,tn) and Ui  - (UN ) J,* The boundary valuesSi ii-
n ny+, y_, n N are computed by discretizing (4.5), (4.6) according to Section 3 and

-10-



therefore are assumed to be known. In (4.10), (4.11) we introduced the exterior grid

n nvaues I W U in order to get second order approximations for the Neumann boundary

conditions.

As a device for the analysis of the scheme we substitute

(4.12) Wn 0.n i (x n - 1)2 n (x 1 +1) 2(
i i + 4 Y- 4

in order to get homogeneous Newmann boundary conditions. In operator form we write

(4.13) G k,(N = 0

for the left hand sides of (4.8), (4.9) where

(4) w(N) ((WJ)N )M+1

and build the homogeneous boundary conditions into the space!. We define

(4.15) 2 = IV . (V__I .. ,V0 ... V )IVi e R, V = VM+I, V = V_
L M1M1 -M-1 i _M 1 4+1 VM-1

-22 2
L i=-M

h is defined by skipping the components V_MI, VM+ 1  of the elements V of L
2 .

Lh n

Moreover

1 2 2 2
h= IV 6 Lh}, H = {v6 Q 1

(4.16) IVI = Ivi + 1AVI

Iv2 2 = I2 1 I&
4
A'VI

H H L
2

Hh Hh h

Lh  and t are the discrete versions of L2(-1,11) and Hi(.-1,1.) resp. For
Cs Fof

arbitrary Banach spaces X,Y we define

(4.17) C (X,Y) = {z (N) . (zJ)N .IZ j 
6 Y for 0 < j ( N, Z6 9 X for

(4.7)k j=

j ( 0 and lim Z
j 

e X)

cz(N)k C ' max 1znIy + max IZnIX + max X
k( ) 0<nN n0 n-O4



C1 (X) - (z ( ) -( ) e x, im ei x)

(4.18)

z (N)| II = max |znIx + max 16"ZnmX

Ck (X) n(N nrN

We regard Gk,h  as the following mapping:

1 2 2 -2
(41)Gk,h N.M C k( h kc h h

assuming that f (t) fulfill (3.10)(b) and that the boundary values y (t) fulfill

(3.10)(c),(d). Moreover ge c (it x Q, R), 9 C C((-",0]) open,

3 2 2g e c3X I, Lc((-1,1])), cC([-A,0], L ((-1,1]) and

(4.20)(a) I is open, g1 I £ > 0 on R x

shall hold and the parabolic problems (4.1)-(4.4) has a locally unique solution u which

fulfills

(4.20)(b) u e c3 (C[0,T], H4 ([-',]) n c4 [o0,T], L2 ([-1,i])

- 3 4 4(4.20)(c) u c3([- ,01, H (-1,1])), Ux x Ce(-,], H ([-1,1]))( a

Assumptions on the history u and on (4.1), (4.4) which guarantee the required smoothness

of u can be deduced from Renardy (1981b).

A lengthy calculation shows that

(4.21) IG k,h(W(N))Ic k(H2,z2 O(k2 ) + O(h
2)

k~ ~ k C(h Lh)

holds, where (N) (() andi - il-M-1

(x -1)2 (x +1)
2

(4.22) W u(xi't + 4 y_(t - i -M(1)M,j 4 N

with Aj j A ^j For (4.21) we used the boundary convergence result%ihW+1 -1_, WMI - M+I.

(3.34) (convergence of the second derivative of the boundary grid functions yj,

i is necessary here).

As expected our scheme is consistent of second order at the 'exact' solution.

-12-



For the stability analysis we calculate the Frechet derivative of Gk, at (N)

getting

(4.23)(a) (G' h(W ()V (N 91i- n' + -(xh)6
I ,..,a, '  +6v -^ a , °

A (N) 
9 2 (xi'tn h'k)A6vi " g )(hk)(i V. ) -

2 n' 9)i Kc i

- (4)i(h,k)(ikA A vN)) n

for 1 = -M(1)M, 0 1 n < N

((N) (N))n = %p

(4.23)(b) (G ( = V." ) ( n 4 0

Here V(N) = ((vC) @ C (H2) such that V Vn and V n Vn holds
jNi-I-iM+ N-1 -N- -N+-i

for n C N. We obtain t
(4.24) 91 (xilt n'h,k) 

= 
gl1l(6ulxi,t n),U k (4Ulxilt l)--_ 

) n) ), > 0

Nt n

g2 lxitn#h,k) = g11 (Asu(xi.t n),(ik(Au(xil,t ))_ ) +

(4.25) t t

+ g21 (A6u(xi,t),i (Au(xi,t 
)) ) n)i (6 a u(xi,t ))., n

An An

and g(3)i' g(4 ), are linear functionale on C([--,O) involving Frechet derivatives of

g of at most order two.

Similarly to the consistency result we get:t

An 2 * 2

(4.26) 91(Xistn#h,k) g 1(u xt(xit)u xN.P+ h 2I(xi,tnh,k) + k P2(Xiltn'h,k)

t
(4.2') g2 (xi,tnh,k) = - (u xti,t ),u n xi,')) + h 2a(xi tnh,k) + k 2 a (xi,th,k)

where the vectors (PL(Xiftn h'k)i-M' (°Lltn
h,)0) M 1,2 are uniformly bounded

in E2h"

We investigate the linear equation
MN(W ) (N) ( rN)

(4.28) (N )v

(N) 
0 n - Fn n 

n  
h

for(((F 0 M1 - ).) e CkN(Hhi h). FM+I F M-1-i' F F holds

for n 4 0. As in the continuous case (see Renardy (1981b)) we set

-13-



(4.29) P R Q

£ i i+ -

and get the parabolic system of difference equations

" n .Rn+l
(4.30)(a) 

6 P. AR.
"+ n = n+

1
(4.30)(b) Q -=AARn

+ n 1 ^ An

(4.30)(c) 6 R (xi.,tnhk)A A
-
(R + Rn) +

1 21 - i i
+l1A ,(n+1 n
+~2 x,,t ,h~k RI + R. +

An()tn A (N) tn n+1
+ 9(.)(h,k)(i P. + )4i hk(~ + F.i

for i - -4(1 and 0 n< H. For n 0 we have

(4.31) P n APnR, . a-n , . -

and % = - MI RM 1 -RM 4 1  holds. Assuming that T is sufficiently small we regard

(4.30)(c) as perturbation of the time-independent scheme

6 R~ i 1(x.I,,,)(A+AR i
1  + A+A Ri) +

(4.32)(a) 
+IA 000(-~ +

+ 9 2(xi.00 1 )(R i + ARi )+HiI~ ,i -M( F, 0 4n N

(4.32)(b) AR -=A;%1  -0, 0 4n 4N
-0 -0

(4.32)(c) Ri - R I, i - (-M-1)(1)(M+1)
-0 -0 -0 -0 n . n n ...

where R- =RI ,R =R holds. Denoting R =(R- ,...R,.RR) we write

(4.32)(a),(b),(c) in matrix form

(4.33 B 0h~k)n~l= E1 (h,k);n + k14 * R;- Ro

whrefn+1 . 4 (H~,.,Hl nI ')habenet [eer-Neumann boundary conditions

(4.32)(b),(c) are incorporated in the M x 14 matrices 8 0 (h,k), B1 (h,k) (see (4.51), (4.52)).

Proceeding similarly to Varah (1971a,b) we derive

(4.34) ID0 (h,k)_ -2 1

(4.35) lCD0
1 Ch,k)B1 (h,k))tI_ 2 C 2 0 4i 4N

Lh

as h + 0, k *0 where C1, C2  are independent of h,k. (4.34) allows to rewirite (4.33)

as

-14-



(4.36 R
n + 1 

= C(h,k)R
n + k8-1(hk)H 

n  R0 = R0

with C(h,k) B 0 1(h,k)B1 (hk).

From (4.35), (4.36) and consideration similar to Benderson (1971) we get the stability

estimate

(4.37) max IRn, 2 + max 16 Rn 2 C3 (1RI2 + max IH'nl2
OnN Hh  O(nfN Lh  H O<n4N Lh

Now we assume

2
(4.38) h . Xk, . = const )1 0 as h,k + 0

For the difference scheme

+-n n+1
(4.39)(a) 6P . =AR

(4.39)(b) 6+
n . A A Rn+
i +

A A n
n 1+

(4.39)(c) 6R. - (x 0,0 )A A_ (R + R.) +
2 2 + 1 i +

I A 2 ( ,0,0,0)A(Rn+1 + Rn) + H.n+1+ i g2(i 0  
i i

and

(4.39)(d) ARM A 0, 0 4 n 4 N

0 -0 _0 -0 "0 -0
(4.39)(e) R i" R iP = P. Q. = X, i = -M(1)M

we get immediately

(4.40) max Ipn 1-2 + max 16 +pn -2 + max I nl 2 +
Oen4N L. Oen<N Lh Ofn(N Lh

+ max 16+Qnl + max IRn + max 16+R n E
0n<N on0(, n +

ON H 0n<N Lh

00 - -0 n
( const(IP E2 + IQ1 -2 + R I

1 
2 + max IN 1 -

h h Hh  0n(N Lb

W/e now interpret (4.30) as perturbation of (4.39). Therefore we write
AO (N) tn 0 .% "(N))t 

n 
+AO 'A (N).t n

(4.41) 
9
3(i)(UkPi 9 3(i) k Pi 93(ik i )

4 2(N) t n AO A (N))tn AO ,A(N) tn
(4.42) 94(i)(Uk~i ) 4(i)( k i + 9 4(1) Uki I

Aj Aij
where P- =0 for j ( 0; - O, for j > 0 and P= Qi'= 0 for j > 0;

^A Q! for j 4 0 end incorporate the second terms of the right hand sides of



(4.4?), (4.42) into the inhomogenity i obtaining *The perturbation originating

from taking A3and AO resp. will be investigated

later. We denote the sum of the two remaining terms in (4.41), (4.42) by 2 (p , I n

and from (4.20)(a) we derive the estimate

(4.43) g(g(Pi Q j ) const( max + max IQ32
i'i i i-i i=-14 -2 -f ~ 2 -4 ~ 2

hL 1( Lh 1~ h

uniformly as hk + 0.

We denote

(4.44) An. (,n . n n n n n
"(-M' 1 " 'Q 141.."'Q1 4, 14,- .'-

A^A0 AO

and rewrite the perturbed system (4.30) (with t = 0 in , and 93(i)' 94(i)

n n
instead of g3 (i}) g4 (i)) as

(4.45)(a) Eo(h,k)A+ E (h,k)A
n 

+ kL 0 (h,k)A+1 + kL 1 (h,k),
n 

+ kilA + kFn+I

0 -0 
) . + k

(4.45)(b) A = A0

where

[i e kD ICh~k)1 } m+I

1 AD k 2 (h~k) ) 2M4+1

(4.46)(a) E0(hk) a 9 (h,k)J ) 2M+1

2K+1 2M+1 2M+1

e! :1
(4.46) (b) EICh,k) = [ J

B 1 (h , k)

(4.46)(c) Q)(Aij eJ. (i- d) F -0

01 )p n )14n~ 1

S. -i j.1 -

-16-



holds. Here we denoted the difference matrices

0 0 0

1 0 -1 e\ \ \
\\\\

(4.47) (a) D 2h~k 1 0 -

1 0 -1

0 0 0

2M+1

-2 2 0

1 -2 1

(4.47)(b) (h,k) . -. 1 -2 1
2 h 2 \\\

8 1 -2 1

0 2 -2

214+1

The first and last rows of D1 (h,k), D2 (h,k) come from incorporating the homogeneous

Neumann conditions.

The matrices L0 (h,k), L1(h,k) are derived by taking q1 (xl,0,h,k), g2 (xi,0,hk)

instead of g1 (xi,0,0,O) and g2 (xFO,0,O) resp. Because of (4.26), (4.27) we get

(4.48) IL,(h,k)lZ 2 4 cnat. , - 0,1

Lh

uniformly as h,k + 0.
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We easily obtain

I 6 kD1 (h,k)B'1 (hk)

(4 4 )E; (h ,k )  - 1 kD2(h,k)B -1(h,k)(4*49) - h''

0 ) B-l (h,k)

and
" ±

(.50- -kDh,k) Clh,k)j

(4.50) (E (h,k)R! (h,k))t -  -kD 2 (h,k) I C(h3,k)

L 0 0 Ch,k) 
i

for i ) 0.

We set a- " (X/i.01010), 0 -" (xi,,0,0) and get from (4.32)(a),(b)

(4.51) B(h,k) - I-(! A2D (h,k) + k AiD lhk))
0 2 A2D2(hk 2~ A1 1(

(4.52) 8 (h,k) - I+ k A2 D2 (h,k) + k AID (hk))

whore A2 - diag(a_, a.,,...,) and A, - diag(O0,...,.%,...,S N) holds. Since

h 2 , )k we get

(4.53) 120
1(h•k)3 -23( const.

Obviously (
I i

(4.54) Y - k I Clh,k)
j -1

solves the matrix iteration

(4.55)(a) ¥i+1 C(h,k)Y + kC(hk) , 0 4 1 N-I

(4.55)(b) ¥0 . e

From (4.37) we get

(4.56) max IYI 1 2 const.18 1(hk)12

secause of (4.38) BI(hk) is uniformly bounded (in t ) and therefore the right

hand side of (4.56) is uniformly hounded as h,k * 0. We obtain

-18-



i i

(4.57) 2 k C31 IDk C
3
12 const., 0 4 i 4 N

j2 1 1 =

uniformly as h,k * 0.

it is interesting to note that the mesh-size restriction (4.38) is not necessary for

the implicit Euler-scheme since for this fully implicit scheme B1 - I holds.

(4.57) implies L2 -stability of (4.45):

-1i
(4.58) I(E(hk)E1 (

h '
k))) i ( const. for 0 < i 4 N

-2 3
h

uniformly as h,k + 0.

By proceeding similarly to Richtmeyer and Norton (1965, Chapter 3.9) we get

(4.59) IAI ( const.(IA 1( 3 + max I (F ) i-- -2

NL h 1fjen Lb

where (An)N.0  solves (4.45). For the (first) time difference quotient of Rn w get
n n

R (C(h,k) - I)Rn + (Bo1(h,k)Lo(hk)Rn +

(4.60)

+ 8 (hk), (h
'
kIRn+l + Bo ih'k)(D3. (P) Q ) -

"  + (h
'
k)

1
Fn+l M

0 1 0 i j-1 1-N 0 i-

where LI(h,k), I = 0,1 stands for the (block) matrix in the (3.3) position of L,(h,k).

From (4.36), (4.37) we get

(4.61) 18+Rn-2 f const.(IRiO +- max IAl + max I(F)
M  I

L h  
H2 1 j(n (E2)3 iCjcn+1 ii=- z2

h h h) Lh

Similarly we get bounds for the spatial dfference quotients and using (4.59) we obtain the

stability estimate

(4.62) IRnI 2 const.(Io, 2  Io, + IQ0 , + max I(F,- •

2b H Lb 2 2 1JCn i i--N -2

From (4.29) we get immediately

(4.63) I(G2 (W (N))1 const.
h k(Hp WY Ck (Hh )

uniformly as h,k 4 0 where
(4.64) '(N) = (IN +)1I

(6 -( )j _.m -
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and

(4.65)(a) = W , i (-M-1)(1)(M+I), i 0

(4.65)(b) -. W. i

holds.

As a lengthy (but easy) calculation shows G' is uniformly Lipschitz continuous ink,n

sphere SP ( ) W cC(. ) whose radius P is independent of h,k:

(4.66) IG h Y (N) - G' (N) , 2 + const.IY() - C( I (H 2

forz(N), y(N) S ((N)). Since (4.20) implies that

(4.67) oW(N  - I)1 - o(I) as T + 0

k n

holds, the estimate (4.63) is also fulfilled by G'h W ) if T is sufficiently small.

Applying Xeller's (1975) theory we obtain

Theorem 4.1. Assume that the assumptions (4.20) and (4.38) hold. Then for h,k

sufficiently small the scheme (4.8), (4.9), (4.10), (4.11) has a locally

_nM+1 .N
unique solution ((Un ) ).n if T is sufficiently small and the

i i--H- f n-m

convergence estimate

(4.68) I((Un _ u(xift)) N K I 0(h
2

i n n-i=-N 1 ( 2
k n

as h + 0 holds. The (abstract) Newton method for (4.13) converges quadratically from a

(sufficiently small) sphere of starting values whose radius is constant as h,k + 0.

Of course, T can be taken independently of h,k.
- 1[- -1 1 H 1- ] o dRemark. Renardy (1981) assumed that g R x1 H

Remrk I1 [1 1 od

instead of (4.20)(a). This is a more realistic assumption (with respect to

viscoelastic problems) since H ([-1,1]) is a Banach algebra (elements can be

multiplied), but the perturbation approach (4.45) would not go through as

presented. However, this is a technicality which can be repaired by

incorporating one more x-difference quotient into the spaces.
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As an example, we apply our Crank-Nicolson-type scheme to a model for the stretching

of a thin filament of a viscoelastic fluid when a force f is applied to its ends (derived

by Renardy (l9dlb)):

(4.69)(a) Putt - GX(3 +
(4.9)a) u~ = (3n -I- + u F(ut) - x~G~ ). e [-1,11, t e [041]2 X X 2 x

x x

(4.69)(b) u(xt) - i(x,t) , X [-1,1], t Q [- ,0j

(4.69)(c) u (1,t) y(t) , t Q E-,T]x

(4.69)(d) u (-1,t) - y(t) , t 6 [- ,Tj
X

where y(t) solves

(4.70)(a) 3 y ( + y(t)F(yt) - G(yt) - f(t), t e 10,T]y~lt) y~lt)

(4.70)(b) y(t) - u X(1,t) = u x(-It) , t 6 (-,0j

The history u(x,t) is assumed to be an odd function of x for all t 6 (-MO), F, G

are functionals (of Volterra type). The parameters P. n and the physical meaning of u

is explained in Renardy (1981b).

At first we apply the midpoint rule (3.3), (3.4) to the boundary problems (4.69) and

obtain

(4.71)(a) 12T Y +n n (iky(N) )tn+l/ 2  -

(ynn+ 1+ 2 2 k

4 (N))n+I/2 M

(yn4yn+ )2 G((i= f(tn+I 2 ), 0 n N

(4.71)(b) yn u (l,tn ), n r 0

(4.8)-(4.11) applied to (4.69) gives

dA A _OI(AUn)
2 

- 2ASU'AU'A A .n
(4.72)(a) 6+6-n . 3i+-i

i (Aun)4

+ A+A UiF((i AU(N)tn ) +
+ i k i
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in AU'~F ((AUN)) A (N)n

A A A t

+ 2 ,±,4 U G((ikAU" ) -

(ALP),
i

I G A" (N)" n (i A A " (N)
(,,n)2 Il lk ui )k + -i)

k+-

for 1 ( -4(1)1M, 0 < n < N

(4.72)(b) = t ), i - -4(1)Y4, n 0 0
i i'n

(4.72)() AU 'R -y ' n (,N

(4.72)(d) AOnM . yn ,n N

Here F1 G1  denote the first Preehet derivatives of P and G reap.
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